METALLORGANISCHE LEWIS-SÄUREN; METALLKOMPLEXE MIT SCHWACH KOORDINIERTEN ANIONISCHEN LIGANDEN

XIII *. NACHWEIS DER KOORDINATION VON TETRAFLUOROBORAT IN CARBONYLMOLYBDÄN- UND -WOLFRAM-KOMPLEXEN DURCH ¹⁹F-UND ³¹P-NMR-SPEKTROSKOPIE

KARLHEINZ SÜNKEL, GÜNTER URBAN und WOLFGANG BECK *

Institut für Anorganische Chemie der Universität München, D-8000 München 2, Meiserstr. 1 (B.R.D.) (Eingegangen den 10.Februar 1983)

Summary

In the tetrafluoroborato complexes $(\eta^5-C_5H_5)(CO)_2LMFBF_3$ (M = Mo, W; L = CO, PPh₃, P(OPh)₃) and $(\eta^5-C_9H_7)(CO)_3WFBF_3$ the coordinated fluorine atom and the terminal F atoms of the BF₄ ligand can be distinguished by their ¹⁹F NMR signals. ¹⁹F and ³¹P NMR spectra of $(\eta^5-C_5H_5)(CO)_2P(OPh)_3WFBF_3$ allow to establish *cis* \rightarrow *trans* isomerization at elevated temperatures as well as rapid rotation of the coordinated BF₄ ligand.

Zusammenfassung

In den Tetrafluoroborato-Komplexen $(\eta^5-C_5H_5)(CO)_2LMFBF_3$ (M = Mo, W; L = CO, PPh₃, P(OPh)₃) und $(\eta^5-C_9H_7)(CO)_3WFBF_3$ lassen sich das koordinierte Fluoratom und die endständigen F-Atome des BF₄-Liganden durch ihre ¹⁹F-NMR-Signale unterscheiden. An Hand der ¹⁹F- und ³¹P-NMR-Spektren lässt sich für $(\eta^5-C_5H_5)(CO)_2P(OPh)_3WFBF_3$ eine bei höherer Temperatur erfolgende $cis \rightarrow trans$ -Isomerisierung sowie eine rasche Rotation des koordinierten BF₄-Liganden nachweisen.

Einleitung

Die Koordination des BF_4^{-1} -Ions an ein Metallatom M ($M-F-BF_3$) wurde bisher vor allem durch IR-Spektroskopie [2] und Röntgenstrukturanalyse [3] nachgewiesen. Von Fischer et al. [4] und Kawaguchi et al. [5] wurden einige Tetrafluoroborato-Komplexe NMR-spektroskopisch untersucht.

^{*} XII. Mitteilung siehe Ref. 1.

Im ¹³C-NMR-Spektrum von mer-(MeC)Cr(CO)₃(PMe₃)FBF₃ [2] erscheint das Kohlenstoff-(Carbin)-Signal nicht als Dublett, sondern als Multiplett, was als Beweis für die Koordination des BF₄--Liganden angesehen werden kann. Im ³¹P-NMR-Spektrum dieser Verbindung wurde kein Dublett sondern ein Quintett gefunden, entsprechend einem raschen Platzwechsel der Fluoratome des koordinierten BF4--Liganden. Das ¹⁹F-NMR-Spektrum von trans-W(CO)₄(CPh)(FBF₃) [4] zeigte bei -50° C nur ein breites Singulett bei δ -173.5 ppm. Für trans-Pd(FBF₃)-(R)(C₅H₅N)PPh₃ [5] wurde im ¹⁹F-NMR-Spektrum ein Doppeldublett bei etwa - 155 ppm und ein eng benachbartes, zu höheren Frequenzen verschobenes Multiplett gefunden. Die wenigen ¹⁹F-NMR-spektroskopisch untersuchten Fluorokomplexe L_nM-F von Metallen in niederen Oxidationsstufen zeigen, dass das koordinierte Fluoratom durchweg sehr gut abgeschirmt ist [6,7] (vgl. Tab. 1). Daher sollten sich das koordinierte Fluoratom $(M-F-BF_3)$ und die endständigen Fluoratome (-BF3) in ihrer chemischen Verschiebung stark unterscheiden und zwar müsste die Resonanz des koordinierten Fluoratoms bei niedrigeren Frequenzen relativ zu BF4⁻ auftreten. Wir haben nun eine Reihe von Tetrafluoroborato-Komplexen des Typs $(\eta^5-C_5H_5)(CO)_2(L)MFBF_3$ $(L = CO, PPh_3, P(OPh)_3; M = Mo,$ W) [8,9] ¹⁹F- und ³¹P-NMR-spektroskopisch bei tiefen Temperaturen vermessen.

Tetrafluoroborato-Komplexe $(\eta^5 - C_5 H_5)(CO)_2 LMFBF_3$ (M = Mo, W; L = CO, PPh₃, P(OPh)₃)

Wie erwartet, werden in den ¹⁹F-NMR-Spektren von $(\eta^5-C_5H_5)(CO)_3MFBF_3$ (M = Mo, W) jeweils ein Dublett (-FBF₃) bei etwa – 155 ppm und ein Quartett (-FBF₃) bei – 347.6 bis – 417.5 ppm gefunden (im Intensitätsverhältnis 3/1) (Tab.1, Fig. 1). Diese grosse Verschiebung des M-F-BF₃-Signals könnte dafür verantwortlich sein, dass bei den bisher ¹⁹F-NMR-spektroskopisch untersuchten Tetrafluoroborato-Komplexen [4,5] das Signal des koordinierten Fluoratoms nicht erfasst wurde. In den P(OPh)₃-Komplexen sind die Signale des koordinierten Fluoratoms durch die Kopplung mit dem ³¹P-Atom in Dubletts aufgespalten. Bei den phosphanhaltigen Komplexen besteht die Möglichkeit der *cis-trans* Isomerie. Dies führt im Fall von (η^5 -C₅H₅)(CO)₂P(OPh)₃WFBF₃ zu je zwei unabhängigen

Fig. 1. ¹⁹F-NMR-Spektrum von $(\eta^5$ -C₅H₅)(CO)₃MoFBF₃ in CD₂Cl₂ bei - 80°C.

-	
щ	
ų.	
Ξ	
æ	
Ζ.	
	

¹⁹F- UND ³¹P-NMR-DATEN VON TETRAFLUOROBORATO-KOMPLEXEN (in CD₂Cl₂), chemische Verschiebungen in ppm bezogen auf externes CFCl₃ bzw. H₁PO₄: Kopplungskonstanten in Hz)

the second down the second down the second									1
Verbindung	¹⁹ F-NMR					³¹ P.NMR			
	M <i>F</i> BF3	M-F-BF3	² <i>J</i> (¹⁹ F ¹⁹ F)	$(\mathbf{J}_{61}\mathbf{b}_{16})\mathbf{f}_{2}$	Temp (°C)	M-PR ₃	$^{2}J(^{31}\mathbf{P}^{19}\mathbf{F})$	Temp. (°C)	
(<i>n</i> ⁵ -C ₅ H ₅)(CO) ₃ MoFBF ₃	–371.5 q	– 156.3 d	95		- 80				
(η ⁵ -C,H ₅)(CO) ₃ WFBF ₃	– 394.3 q	– 153.2 d	66		- 52				
(η ⁵ -C ₀ H ₂)(CO) ₃ WFBF ₃	– 347.6 q	– 157.5 d	95		- 58				
(ŋ ² -C,H,)(CO) ₂ (PPh ₃)MoFBF ₃	- 391.6 q ^a	– 155.6 d	06		- 80	66.7 d	18	- 60	
						50.5 m	%		
$(\pi^5$ -C,H,)(CO) ₂ P(OPh) ₃ MoFBF ₃	– 387.4 d von q	– 156.0 d	98	46	- 80	181.4 d	39	- 60	
(η ⁵ -C ₅ H ₅)(CO) ₂ P(OPh) ₃ WFBF ₃	– 392.1 d von q	– 157.6 d	98	58	- 51	152.3 d	58	-40	
1	-417.5 d von q	– 158.2 d	86	50		141.7 d	50	- 53	
[(η ² -C ₅ H ₅)(CO) ₄ Mo] ⁺ BF ₄ ⁻ trans-MF(CO)(PPh ₅) ₂ [6] [PtF(PR ₃) ₃] ⁺ BF ₄ ⁻ [6] [Mo(CO) ₂)(dpe) ₂ F] ⁺ PF ₆ ⁻ [7]	- 149.4 (in Aceton M = Ir: -254 -232 bis -260 -268	1-d ₆) M = Rh:	271						

^a Zusätzlich tritt bei -80° C ein intensitätsschwaches Multiplett bei ~ -344 ppm auf.

Dubletts und Oktetts (siehe unten). Für den Indenylkomplex (η^5 -C₉H₇)(CO)₃WFBF₃, der im IR-Spektrum die stärkste Aufspaltung der ν (B–F)-Banden zeigt [8], wird von den vermessenen Komplexen für das koordinierte Fluoratom die geringste Abschirmung beobachtet. Es lässt sich offenbar keine Korrelation zwischen der Aufspaltung der ν (B–F)-Banden im IR-Spektrum und der ¹⁹F chemischen Verschiebung aufstellen.

Bei Temperaturerhöhung ist allgemein eine Intensitätsabnahme und gleichzeitige Verbreiterung der Fluorsignale zu beobachten. Bei keiner der untersuchten Verbindungen liess sich im untersuchten Temperaturbereich ein rotierender, aber noch koordinierter BF₄-Ligand ¹⁹F-NMR-spektroskopisch nachweisen. Dies gelang allerdings durch ³¹P-NMR-Spektroskopie. Bei tiefen Temperaturen sind die ³¹P-Signale zu Dubletts aufgespalten, die sich bei Temperaturerhöhung verbreitern und schliesslich eine quintettartige Struktur annehmen. Die gemittelte Kopplungskonstante ² $J(^{31}P^{19}F)$ beträgt - entsprechend vier äquivalenten F-Atomen - etwa ein Viertel der Kopplungskonstante im Dublett. Letzteres bestätigt die Untersuchungen von E.O. Fischer und Mitarb. an Cr(CO)₃(PMe₃)(CMe)(BF₄) [2]. Warum das bei Rotation des BF₄⁻ zu erwartende Dublett im ¹⁹F-NMR-Spektrum nicht beobachtet werden konnte, bleibt vorläufig unklar. Möglicherweise ist die scalare Relaxation 2. Art durch B-F-Kopplung dafür verantwortlich.

cis-trans-Isomerisierung von (n⁵-C₅H₅)(CO)₂P(OPh)₃WFBF₃

Die Verbindungen des Typs $(\eta^5-C_5H_5)M(CO)_2LX$ haben annähernd quadratisch pyramidale Struktur und können deshalb als *cis-trans*-Isomere vorliegen. Nach Untersuchungen von Faller et al. [10] wird das Gleichgewicht zwischen den Isomeren sowohl von sterischen als auch elektronischen Effekten beeinflusst.

Die Hydrido-Komplexe (X = H) liegen meist bevorzugt in der *cis*-Konfiguration vor [10], mit $L = P(OPh)_3$ sogar fast vollständig. Der Übergang zu sterisch anspruchsvolleren Liganden X wie z.B. I⁻, CH₃ oder CH₂Ph führt bevorzugt zum *trans*-Isomeren.

In der Reaktion von $(\eta^5-C_5H_5)(CO)_2P(OPh)_3W-H$ mit Ph_3C^+ BF_4^- zu $(\eta^5-C_5H_5)(CO)_2P(OPh)_3WFBF_3$ sollte also, sofern nur sterische Effekte massgebend sind, aus dem reinen *cis*-Hydrid vor allem der *trans*-Tetrafluoroborato-Komplex entstehen. Wie Fig. 2 und 3 zeigen, ist eine solche Umwandlung auch tatsächlich in den ¹⁹F- und ³¹P-NMR-Spektren zu beobachten. Geht man davon aus, dass das BF_4^- -Ion den Platz des Hydridliganden in der Koordinationssphäre des Wolframs einnimmt, so sollte bei tiefer Temperatur zunächst der *cis*-Tetrafluoroborato-Komplex entstehen. Bei der Reaktion von *cis*- $(\eta^5-C_5H_5)(CO)_2LMoH$ (L = PPh₃, P(OPh)₃) mit CCl₄ zu *cis*- $(\eta^5-C_5H_5)(CO)_2LMoCl$ wird ebenfalls Konfigurationserhalt gefunden [11].

Das ³¹P-NMR-Spektrum zeigt zunächst nur ein Dublett. Bei etwa + 10°C erscheint neben dem Quintett, das aus dem Dublett hervorgegangen ist, ein weiteres zu höheren Frequenzen verschobenes Quintett, das schliesslich bei dieser Temperatur allein übrigbleibt. Bei erneutem Abkühlen wandelt sich dieses Quintett wieder in ein Dublett um, das ursprüngliche Dublett bildet sich nicht mehr zurück. Im IR-Spektrum lässt sich aus der relativen Intensität der Carbonylbanden der so erhaltenen Lösung auf *trans*-Konfiguration des Komplexes schliessen [12].

Dies bestätigt die Annahme, dass ursprünglich ein cis-Komplex gebildet wurde,

Fig. 2. ¹⁹F-NMR-Spektren von $(\eta^5-C_5H_5)(CO)_2P(OPh)_3WFBF_3$ zwischen - 56 und + 12°C in CD₂Cl₂.

der sich aus sterischen Erfordernissen in das *trans*-Isomere umlagert. Das ¹⁹F-NMR-Spektrum von $(\eta^5-C_5H_5)(CO)_2P(OPh)_3WFBF_3$ (Fig. 2) zeigt im Prinzip die gleiche Tendenz; es werden jedoch sofort beide Isomeren nebeneinander beobachtet. Eine Zuordnung der Isomeren aufgrund der relativen chemischen Verschiebung oder der Kopplungskonstante allein erscheint schwierig, da zu wenige Vergleichsverbindungen vorliegen. In quadratisch planaren Komplexen liegen die *cis* ²J(³¹P¹⁹F)-Kopplungskonstanten bei 28–39 Hz, die entsprechenden *trans*-Kopplungen sind meist wesentlich grösser (140–160 Hz) [6]. Ähnliche Beobachtungen gelten für die ²J(³¹P¹⁹H)-Kopplungen in quadratisch-planaren Hydrido-Komplexen [13]. Dagegen ist für quadratisch pyramidale Hydrido-Komplexe des Typs ($\eta^5-C_5H_5$)(CO)₂-(PR₃)MH die ²J(³¹P¹H)-Kopplungskonstante im *cis*-Isomeren etwa zwei- bis dreimal grösser als im *trans*-Isomeren [13,14].

Fig. 3. ³¹P-NMR-Spektren von $(\eta^5-C_5H_5)(CO)_2P(OPh)_3WFBF_3$ bei verschiedenen Temperaturen in CD_2Cl_2 ; a = Zersetzungsprodukt.

NMR-spektroskopischer Hinweis auf einen Methylenchlorid-Komplex, $[(\eta^5-C_5H_5)-(CO)_3Mo(CH_2Cl_2)]^+PF_6^-$

Bei der Darstellung von $(\eta^5-C_5H_5)(CO)_3MFEF_5$ (M = Mo, W; E = P, As, Sb) in CH₂Cl₂ fallen im Unterschied zum BF₄⁻-Komplex zunächst purpurfarbene Niederschläge an, die erst nach längerem Trocknen bei Raumtemperatur die übliche blau-violette Farbe annehmen [8,1]. Die ¹H-NMR-Spektren und die Analysen dieser purpurfarbenen Niederschläge zeigen, dass sie CH₂Cl₂ enthalten. Im IR-Spektrum können zwei ν (C-Cl)-Banden koordiniertem CH₂Cl₂ zugeordnet werden.

Metallkomplexe mit halogenierten Kohlenwasserstoffen als Liganden wurden schon öfters diskutiert [15]. Vor kurzem wurde die Bindung von *o*-Diiodbenzol an Iridium(III) röntgenographisch nachgewiesen [16]. Das ¹⁹F-NMR-Spektrum von $(\eta^5-C_5H_5)(CO)_3MoPF_6$ in CD₂Cl₂ zeigt bei Temperaturen unter -20° C nur ein Dublett bei -70.5 ppm, ¹J(³¹P¹⁹F) 714 Hz, das wir freiem, unkoordinierten PF₆⁻ zuordnen. Erhöht man die Temperatur bis auf $+15^{\circ}$ C, so nimmt die Intensität des Dubletts des freien PF₆⁻ ab. Gleichzeitig wachsen bei niederen Frequenzen 4 kleine intensitätsschwache Resonanzsignale ($T - 10^{\circ}$ C: -81; -84.3; -92.5; -97 ppm) und ein sehr breites, intensitätsstarkes Dublett ($T = -10^{\circ}$ C; -111.3 ppm; ¹ $J(^{31}P^{19}F) \approx 710$ Hz) heraus. Bis etwa -600 ppm ist kein weiteres Signal zu beobachten. Für koordiniertes Hexafluorophosphat ist ein Spektrum höherer Ordnung zu erwarten [17-19].

Wird die Lösung wieder abgekühlt, so bleibt nur noch das ursprüngliche Dublett erhalten. Diese Beobachtung kann so erklärt werden, dass bei tiefer Temperatur ein CH_2Cl_2 -Komplex vorliegt, der freies unkoordiniertes PF_6^- enthält und somit zu dem Dublett-Signal führt. Bei Temperaturerhöhung verdrängt das PF_6^- -Ion allmählich das CH_2Cl_2 -Molekül und tritt in die Koordinationsphäre des Molybdäns ein.

$$\left[\left(\eta^{5}-C_{5}H_{5}\right)(CO)_{3}Mo(CH_{2}Cl_{2})\right]^{+}PF_{6}^{-}\stackrel{\Delta}{\rightleftharpoons}\left(\eta^{5}-C_{5}H_{5}\right)(CO)_{3}MoFPF_{5}+CH_{2}Cl_{2}$$

Bei höherer Temperatur besteht die Möglichkeit der Rotation des koordinierten PF_6^{-1} -Ions. Dies ist offensichtlich bei den in der Literatur beschriebenen PF_6^{-1} -Komplexen der Fall, die durchwegs nur zu Dubletts bei -72 bis -75 ppm und Kopplungskonstanten von etwa 750 Hz Anlass geben [20].

Im ¹H-NMR Spektrum konnten bei -60 bis 0°C keine 2 Signale für koordiniertes, bzw. unkoordiniertes CH₂Cl₂ gefunden werden. Möglicherweise ist die chemische Verschiebung zu klein, so dass die Signale zusammenfallen.

Ausserdem wird die Intensität des $(\eta^5-C_5H_5)$ -Signals (6.04 ppm rel. CHDCl₂ 5.30 ppm) bei zunehmender Temperatur geringer, was einer abnehmenden Löslichkeit entspricht. Kühlt man wieder ab, so erscheint das $(\eta^5-C_5H_5)$ -Signal fast in seiner ursprünglichen Intensität wieder.

Bei allen untersuchten Komplexen $(\eta^5-C_5H_5)(CO)_2LMX$ (M = Mo, W; L = CO, PPh₃, P(OPh)₃; X = BF₄⁻, PF₆⁻) treten in den NMR-Spektren bei höheren Temperaturen allmählich die Signale der freien Anionen auf (BF₄⁻: δ (¹⁹F) – 149 bis 154 ppm; PF₆⁻: δ (¹⁹F) – 72 ppm). Dies ist auf die Bildung der stabilen 18-Elektronensysteme $[(\eta^5-C_5H_5)(CO)_4M]^+X^-$, $[(\eta^5-C_5H_5)(CO)_3LM]^+X^-$ bzw. $[(\eta^5-C_5H_5)(CO)_2L_2M]^+X^-$ [8,9] zurückzuführen, die durch Ligandenübertragung entstehen.

Experimentelles

Die untersuchten Komplexe wurden, wie früher beschrieben, dargestellt [8,9]. Für die Messungen stand ein Jeol FX-90-NMR-Gerät zur Verfügung.

Dank

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie gilt unser Dank für grosszügige Förderung. Für wertvolle Anregungen bei der Diskussion der NMR-Spektren danken wir Herrn Dr. B. Wrackmeyer sowie Frl. U. Taubald, Frl. E. Eichin und Frl. D. Motz für aktive Mitarbeit.

Literatur

- 1 K. Sünkel, U. Nagel und W. Beck, J. Organomet. Chem., 251 (1983) 227.
- 2 K. Richter, E.O. Fischer und C.G. Kreiter, J. Organomet. Chem., 122 (1976) 187.
- 3 B. Olgemöller, H. Bauer, H. Löbermann, U. Nagel und W. Beck, Chem. Ber., 115 (1982) 2271.
- 4 E.O. Fischer, S. Walz, A. Ruhs und F.R. Kreissl, Chem. Ber., 111 (1978) 2765.

- 6 M.A. Cairns, K.R. Dixon und J.J. McFarland, J. Chem. Soc., Dalton Trans., (1975) 1159.
- 7 M.R. Snow und F.L. Wimmer, Aust. J. Chem., 29 (1976) 2349.
- 8 W. Beck und K. Schloter, Z. Naturforsch. B, 33 (1978) 1214.
- 9 K. Sünkel, H. Ernst und W. Beck, Z. Naturforsch. B, 36 (1981) 474.
- 10 J.W. Faller und A.S. Anderson, J. Amer. Chem. Soc., 92 (1970) 5852.
- 11 A. Bainbridge, P.J. Craig und M. Green, J. Chem. Soc. A, (1968) 2715.
- 12 W. Beck, A. Melnikoff und R. Stahl, Chem. Ber., 99 (1966) 3721.
- 13 H.D. Kaesz und R.B. Saillant, Chem. Rev., 72 (1972) 231.
- 14 T.C. Flood, E. Rosenberg und A. Sarhangi, J. Amer. Chem. Soc., 99 (1977) 4334.
- 15 J.A. Osborn, F.H. Jardine, J.F. Young und G. Wilkinson, J. Chem. Soc. A, (1966) 1711; D.N. Lawson, J.A. Osborn und G. Wilkinson, J. Chem. Soc. A, (1966) 1733; A.W. Addison und R.D. Gillard, J. Chem. Soc., Dalton Trans., (1973) 2002; P.J. Harris, S.A.R. Knox, R.J. McKinney und F.G.A. Stone, J. Chem. Soc., Dalton Trans., (1978) 1009.
- 16 R.H. Crabtree, J.W. Faller, M.F. Mellea und J.M. Quirk, Organometallics, 1 (1982) 1361.
- 17 J.-Y. Calves und R.J. Gillespie, J. Chem. Soc. Chem. Commun., (1976) 506.
- 18 S. Brownstein, J. Bornais und G. Latremouille, Can. J. Chem., 56 (1978) 1419.
- 19 R.K. Harris und K.J. Packer, J. Chem. Soc., (1962) 3077.
- 20 Vergl. F.J. Regina und A. Wojcicki, Inorg. Chem., 19 (1980) 3803.